

From Startup to Audit-Ready:

Building a Scalable Quality System

Introduction

Startups in the life sciences sector face a dual challenge: innovating rapidly while maintaining strict regulatory compliance. Building a scalable, audit-ready Quality Management System (QMS) from the ground up is not just a regulatory necessity—it's a strategic imperative. This guide provides a practical roadmap for emerging companies to establish a QMS that supports growth and agility, ensures compliance with FDA and EMA expectations, and fosters a culture of quality.

Why Quality Systems Matter Early On

A well-structured QMS is more than a regulatory checkbox—it's a strategic asset and the backbone of operational excellence. For startups, early investment in well-thought-out quality infrastructure can:

- Accelerate time to market
- Reduce the risk of costly re-work, delays, or recalls
- · Build credibility with investors and partners
- Prepare for regulatory inspections and due diligence

Regulatory bodies like the FDA and EMA expect even small companies to demonstrate control over their processes, data, and documentation. There is no "startup exemption" from compliance with standards such as:

- <u>21 CFR Part 11</u> Electronic records and signatures
- <u>21 CFR Parts 210/211</u> cGMP for pharmaceuticals
- **21 CFR Part 820** Quality system regulation for medical devices
- **ISO 13485** QMS for medical devices
- **ISO 14971** Risk management for medical devices

Documentation Practices: Building the Backbone

Documentation is the cornerstone of any compliant QMS. It ensures traceability, reproducibility, and accountability—core principles in regulated environments. Key elements of QMS documentation include:

Document Control:

Implement a system that manages the full document lifecycle: creation, review, approval, distribution, revision, and archival. Ensure version control, audit trails, and access restrictions are in place. This is essential for compliance with <u>21 CFR</u> Part 11 and ISO 13485.

Standard Operating Procedures (SOPs):

Product Development and Testing – SOPs should define the stages of product development, including design inputs and outputs, design and process validation procedures, and documentation of testing protocols and results. Include criteria for design reviews and change control.

Applicable Regulations & Standards:

- 21 CFR Part 312 Investigational New Drug Application (IND) requirements for clinical testing
- ICH Q8 (R2) Pharmaceutical Development guidelines
- **ISO 13485:2016, Clause 7.3** Design and development for medical devices

Equipment Calibration and Maintenance – SOPs should outline calibration schedules, preventive maintenance procedures, handling of out-of-tolerance equipment, and traceability to national or international standards. Include documentation and escalation protocols.

Applicable Regulations & Standards:

- 21 CFR Part 211.68 Automatic, mechanical, and electronic equipment
- 21 CFR Part 820.72 Inspection, measuring, and test equipment
- **ISO 17025:2017** General requirements for the competence of testing and calibration laboratories

Quality Assurance and Control – SOPs should detail procedures for batch record issuance, control and review; deviation handling; product release; and inprocess/final product testing. Include acceptance criteria, sampling plans, and documentation requirements.

Applicable Regulations & Standards:

- 21 CFR Part 211 Subpart E Control of components and drug product containers
- 21 CFR Part 820 Subpart G Production and process controls
- ICH Q10 Pharmaceutical Quality System

Risk Management and CAPA – SOPs should describe how and when to conduct risk assessments (e.g., FMEA), initiate CAPAs, perform root cause analysis, implement corrective/preventive actions, and verify effectiveness. Include escalation and closure procedures.

Applicable Regulations & Standards:

- **21 CFR Part 820.100** Corrective and Preventive Action
- **ISO 14971:2019** Application of risk management to medical devices
- ICH 09 Quality Risk Management

Data Integrity and Cybersecurity – SOPs should define access controls, audit trail requirements, data backup and recovery procedures, system validation procedures, and staff training on data integrity principles (e.g., ALCOA+). Include cybersecurity measures for any systems with networking capabilities.

Applicable Regulations & Standards:

- **21 CFR Part 11** Electronic records and electronic signatures
- **EU Annex 11** Computerized Systems
- **GAMP 5** Good Automated Manufacturing Practice
- <u>NIST SP 800-53</u> Security and privacy controls for information systems

Templates and Records:

Using standardized templates ensures consistency, completeness, and compliance across all quality records. They help teams capture critical information uniformly, reduce the risk of omissions, and streamline training and reviews. Templates also support regulatory expectations for traceability and data integrity by minimizing variability and standardizing terminology. For startups, adopting templates early simplifies onboarding, accelerates documentation workflows, and enhances audit readiness by making records easier to navigate and verify.

Training Programs: Empowering Your Team

Training is not just a regulatory requirement—it's a foundational element of a strong quality culture. According to **21 CFR 211.25(a)**, all personnel involved in the manufacture, processing, packing, or holding of drug products must have the education, training, and experience to perform their assigned functions. Similarly, **ISO 13485:2016 Clause 6.2** requires that personnel performing work affecting product quality be competent based on appropriate education, training, skills, and experience.

For startups in the life sciences sector, building a compliant and scalable training program early on ensures operational consistency, audit readiness, and regulatory compliance.

Core Components of a Compliant Training Program:

Role-Based Training – Training must be tailored to the specific duties of each role. Employees should be trained not only on how to perform their tasks, but also on the relevant SOPs, regulatory requirements, and the rationale behind them. **21 CFR 211.25(a)** mandates training in both the operations performed and current Good Manufacturing Practices (cGMPs).

Training Records – Maintain complete and auditable training records for each employee. These records are essential for demonstrating compliance during inspections and are explicitly required under **ISO 13485:2016 Clause 6.2.4**. Records must include:

- Training dates and topics
- Materials used (e.g., SOPs, presentations)
- Trainer qualifications
- Assessment results
- Signatures or electronic confirmations

Continuous Learning – Training must be conducted on a continuing basis and with sufficient frequency to ensure employees remain familiar with applicable cGMP requirements. This includes:

- Refresher training on critical procedures
- Training triggered by SOP or system changes
- Cross-functional learning to build organizational resilience

Actionable Steps to Implement a Compliant Training Program:

Develop a Training Matrix – Map each job role to the SOPs, policies, and skills required. This helps identify training gaps and ensures comprehensive coverage.

Integrate Training into Onboarding and Change Control - New hires should complete baseline training before performing regulated tasks. Any procedural or system changes should trigger retraining, as required by <u>21 CFR 211.25(a)</u>

Use a Learning Management System (LMS) – An LMS can automate training assignments, reminders, and tracking. Choose a system that supports electronic signatures and complies with <u>21 CFR Part 11</u> for electronic records.

Assess Training Effectiveness – Use quizzes, practical demonstrations, or supervisor sign-offs to verify comprehension. This aligns with FDA expectations for ensuring training is not only delivered but understood.

Review and Update Regularly – Periodically review training content and records to ensure alignment with current SOPs, regulatory updates, and organizational changes.

Foster a Culture of Learning - Encourage employees to ask questions, report knowledge gaps, and participate in continuous improvement. Recognize and reward training engagement to reinforce its importance.

CAPA Systems: Driving Continuous Improvement

Corrective and Preventive Action (CAPA) is a cornerstone of regulatory compliance and a key driver of continuous improvement in life sciences organizations. Both the **FDA** and **EMA** expect companies to have a structured, documented CAPA process that identifies, investigates, and resolves quality issues in a timely and effective manner.

According to <u>21 CFR 820.100</u> (for medical devices) and <u>ICH Q10</u> (Pharmaceutical Quality System), a compliant CAPA system must be capable of identifying root causes of nonconformities, implementing corrective and preventive actions, and verifying their effectiveness

Regulatory Expectations:

The FDA's CAPA inspectional objectives require that companies:

- Document all activities
- Identify sources of quality problems (e.g., deviations, complaints, audit findings)
- Analyze data for trends and recurring issues
- Investigate root causes using appropriate tools
- Implement corrective and preventive actions
- Verify the effectiveness of those actions
- Document all activities in a traceable and auditable manner

EMA expectations align closely, particularly under <u>EU GMP Chapter 1</u> and <u>Annex</u> <u>15</u>, which emphasize the need for a documented system to manage deviations and implement CAPAs as part of a pharmaceutical quality system.

Core Components of a CAPA System:

Issue Identification – Establish a culture of transparency where employees are encouraged to report deviations, nonconformances, audit findings, and complaints. Use intake forms or digital portals to standardize reporting.

Root Cause Analysis – Ensure that investigations are thorough, unbiased, and documented. Apply structured problem-solving tools such as:

- 5 Whys
- Fishbone (Ishikawa) Diagrams
- Fault Tree Analysis (FTA)
- Pareto Analysis

Action Plans – Define clear corrective and preventive actions with:

- Assigned owners
- Due dates
- Measurable success criteria
- Risk-based prioritization
- Actions should be tracked to closure and reviewed for effectiveness.

Practical, Actionable Advice for Implementation

Start Simple, Scale Smart – Begin with a centralized CAPA log (e.g., Excel or SharePoint) to track issues and actions. As your organization grows, transition to an electronic QMS (eQMS) with automated workflows and audit trails.

Link CAPA to Other Quality Processes – Integrate CAPA with:

- Change control (to manage procedural updates)
- Training (to address knowledge gaps)
- Risk management (to assess impact and recurrence likelihood)

Use Risk-Based Prioritization – Not all issues require the same level of investigation. Use risk matrices to determine the depth of analysis and urgency of response.

Verify Effectiveness – Define how and when effectiveness will be evaluated (e.g., follow-up audits, trend analysis). Document the outcome and rationale for closure.

Review CAPA Trends in Management Reviews – Regularly analyze CAPA data to identify systemic issues, recurring root causes, or process weaknesses. Use this insight to drive continuous improvement initiatives.

Train Your Team – Ensure all relevant personnel are trained on CAPA procedures, investigation tools, and documentation standards. This supports compliance with ISO 13485:2016 Clause 8.5.2/8.5.3 and ICH Q10.

Audit Preparedness: From Chaos to Confidence

Regulatory inspections are not a matter of "if," but "when." Whether conducted by the FDA, EMA, or other authorities, audits are designed to assess whether your quality system is compliant, controlled, and capable of ensuring product safety and efficacy. Being audit-ready means having systems in place that demonstrate traceability, accountability, compliance, and adherence—at all times.

Both the **FDA's Quality System Inspection Technique (QSIT)** and the **EMA's Joint Audit Programme (JAP)** emphasize the importance of proactive audit readiness, robust documentation, and a culture of continuous improvement.

Preparation Strategies:

Mock Audits – Conduct internal audits using FDA QSIT or EMA JAP checklists to simulate real inspection scenarios. These exercises help identify gaps, train staff, and build confidence. Use cross-functional audit teams to ensure objectivity and broaden organizational awareness.

Audit Trails – Ensure all quality-related activities—such as document revisions, training completions, CAPA actions, and system changes—are traceable, time-stamped, and linked to responsible individuals. This is essential for compliance with **21 CFR Part 11** and **EU Annex 11**.

Readiness Binder – Maintain a centralized, well-organized repository of key documents. This repository (physical or digital) should be easily accessible, regularly updated and include:

- Company licenses and registrations
- Quality Manual and SOP index
- Training records and matrices
- CAPA summaries and trending data
- Internal audit schedules and findings

Actionable Insights:

Train Staff on Inspection Etiquette – Conduct role-specific training on how to interact with inspectors. Emphasize honesty, clarity, and professionalism. Teach staff what to say, what not to say, and how to handle document requests.

Designate an Audit Response Team – Assign clear roles for audit coordination, document retrieval, note-taking, and subject matter expertise. Conduct dry runs to practice communication and response protocols.

Keep Records Inspection-Ready at All Times – Avoid the "scramble" by maintaining real-time documentation practices. Ensure documents are signed, dated, reviewed for completeness and accuracy, and stored in a controlled system.

Conduct Post-Audit Reviews – After internal or external audits, hold debrief sessions to capture lessons learned. Use findings to update SOPs, training, and risk assessments.

Use a Digital QMS for Audit Readiness – Electronic systems can streamline document retrieval, track audit trails, and generate reports quickly. Ensure your system complies with <u>21 CFR Part 11</u> and supports role-based access control.

Align with Regulatory Expectations – Familiarize your team with the FDA's QSIT Guide and EMA's Audit Checklist Interpretation Guide. These documents outline what inspectors look for and how they evaluate compliance.

Final Thoughts: Scaling with Confidence

Building a scalable QMS is not just about passing audits—it's about enabling innovation, protecting patients, and building a resilient organization. Organizations that embed quality into their culture from day one are better positioned to grow, attract investment, and succeed in the long term.

Whether you're preparing for your first FDA inspection or scaling toward commercialization, the principles outlined here will help you build a QMS that is both agile and audit-ready.

Ready to Build a Scalable, Audit-Ready Quality System?

At **Compliant Data Solutions**, we specialize in helping life sciences organizations lay the foundation for long-term success—without compromising compliance. Whether you're launching your first QMS, preparing for an FDA inspection, or scaling your operations, our experts are here to guide you every step of the way.

- GxP-Compliant Quality System Design
- End-to-End SOP Development & Training Programs
- CAPA, Audit Readiness & Validation Support

Let's turn your quality goals into a streamlined, inspection-ready reality.

Contact Us Today to schedule a free consultation or learn more at **CompliantData.Solutions**.

